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Abstract
Random walks on graphs are widely used in all sciences to describe a great
variety of phenomena where dynamical random processes are affected by
topology. In recent years, relevant mathematical results have been obtained
in this field, and new ideas have been introduced, which can be fruitfully
extended to different areas and disciplines. Here we aim at giving a brief but
comprehensive perspective of these progresses, with a particular emphasis on
physical aspects.
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1. Introduction

A graph is the most general mathematical description of a set of elements connected pairwise
by some kind of relation. Therefore, it is not surprising that graph theory has been successfully
applied to a wide range of very different disciplines, from biology to social science, computing,
psychology, economy, chemistry and physics.

In recent times, physicists have been mainly interested in graphs as models of complex
systems, in condensed matter and in network theory. Indeed, these structures have proven
to be very useful to describe inhomogeneous structures such as disordered materials, glasses,
polymers, biomolecules as well as electric circuits, communication networks, statistical models
of algorithms, and applications of statistical mechanics to different (non-physical) systems.

The function of graphs in physics, however, is not purely descriptive. Geometry and
topology have a deep influence on the physical properties of complex systems, where the
presence of a large number of interacting degrees of freedom typically matters more than the
interaction details. In fact, the most specific interest of a physicist concerns the properties
of a graph which most affect the dynamical and thermodynamical behaviour of the system
it describes. On the other hand, the study of complex systems requires the introduction of
statistical methods, to give an effective description of a number of quantities otherwise too
difficult to control.

Random walks are probably the simplest stochastic process affected by topology and,
at the same time, the basic model of diffusion phenomena and non-deterministic motion.
They have been extensively studied for decades on regular structures such as lattices, and
most of the common wisdom concerning them relies on the results obtained in this particular
geometry. The richer topology of a generic graph can have a dramatic effect on the properties
of random walks, especially when considering infinite graphs, which are introduced to describe
macroscopic systems in the thermodynamic limit. There, the asymptotic behaviour at long
time typically exhibits universal features, only depending on large scale topology. On
lattices, such features are known to be related to the Euclidean dimension only. On general
graphs, universality allows us to generalize the concept of dimension to inhomogeneous
structures, providing a very powerful tool to investigate a large class of different physical
models, apparently not connected to diffusion processes. On the other hand, a new and
unexpected phenomenon arises in the presence of strong inhomogeneity, namely the splitting
between local and average properties. This provides a fundamental conceptual framework to
investigate complex systems even from an experimental point of view.

Most results concerning random walks on graphs in physics have been obtained in the
last two decades and are scattered over a large number of technical papers. This review is
intended to provide the reader with a rigorous, self-contained and up-to-date account of the
present knowledge about this subject. Particular attention has been paid to give a simple and
general framework effectively resuming rather different results. As for specific calculations,
we refer to bibliography, unless otherwise required for clarity. The emphasis is always put on
the physical meaning. The reader more interested in formal aspects can find a presentation
focused on mathematics in another recent review [1].
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The paper is organized as follows: In the first sections we give a brief mathematical
description of graphs and random walks, introducing the language and the formalism we will
use through the whole paper. Then we present a simple treatment of the finite graphs case,
before dealing with infinite graphs. The latter require the introduction of specific concepts,
which are fully discussed in an introductory section. Then, the asymptotic behaviour of
random walks on infinite graphs is studied and used to define the type problem and the spectral
dimension. The difference between local and average properties is evidenced in the following
sections. The concluding sections are devoted to the analysis of a large class of specific graphs
and to the relations of random walks with different physical problems.

2. Mathematical description of graphs

Let us begin by introducing the basic mathematical definitions and results concerning
graphs [2].

A graph G is a countable set V of vertices (or sites) (i) connected pairwise by a set E of
unoriented links (or bonds) (i, j) = (j, i). If the set V is finite, G is called a finite graph and
we will denote by N the number of vertices of G. Otherwise, when V is infinite, G is called
an infinite graph. A subgraph S of G is a graph whose set of vertices S ⊆ V and whose set of
links E′ ⊆ E.

A path Ci→j in G connecting points i and j is a sequence of consecutive links
{(i, k)(k, h) · · · (n,m)(m, j)} and a graph is said to be connected, if for any two points
i, j ∈ V there is always a path joining them. In the following we will consider only connected
graphs.

Every connected graph G is endowed with an intrinsic metric generated by the chemical
distance rij which is defined as the number of links in the shortest path connecting vertices i
and j .

A particular class of graphs, often occurring in physical applications, is characterized
by the absence of closed paths containing an odd number of links. These graphs are called
bipartite, since we can divide their sites into two sets V1 and V2 such that the points of V1

are connected by a link only to points V2 and vice versa. Square and hypercubic lattices
are the most typical examples of bipartite graphs, as well as all trees (graphs without closed
self-avoiding paths). The graph topology can be algebraically represented introducing its
adjacency matrix Aij given by

Aij =
{

1 if (i, j) ∈ E

0 if (i, j) �∈ E.
(1)

The Laplacian matrix �ij is defined by

�ij = ziδij − Aij , (2)

where zi = ∑
j Aij , the number of nearest neighbours of i, is called the coordination number

of site i.
In order to describe disordered structures we introduce a generalization of the adjacency

matrix given by the ferromagnetic coupling matrix Jij , with Jij �= 0 ⇐⇒ Aij = 1 and
sup(i,j) Jij < ∞, inf(i,j) Jij > 0. One can then define the generalized Laplacian

Lij = Iiδij − Jij , (3)

where Ii = ∑
j Jij .
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3. The random walk problem

Let us now introduce the so-called simple random walk on a graph G. Assuming the time
(t) to be discrete, we define at each time step t the jumping probability pij between nearest
neighbour sites i and j :

pij = Aij

zi

= (Z−1A)ij , (4)

where Zij = ziδij .
This is the simplest case we can consider: the jumping probabilities are isotropic at each

point and they do not depend on time; in addition the walker is forced to jump at every time
step. As we will see later, the last condition, i.e. the impossibility of staying on the site,
although crucial for the short time behaviour, has no significant influence on the long time
regime.

Usually, the random walk problem is considered to be completely solvable if, for any
i, j ∈ G and t ∈ N , we are able to calculate the functions Pij (t), each representing the
probability of being at site j at time t for a walker starting from site i at time 0. These
probabilities are the elements of a matrix P = ‖Pij (t)‖ which is equal to the tth power of the
jumping probabilities matrix p = ‖pij‖:

Pij (t) = (pt )ij . (5)

Relation (5) can be easily proven by induction on t. It also has an interesting physical
interpretation as a sum over paths; developing the matrix products term by term we can write
the whole expression as

Pij (t) = (pt )ij =
∑

Ci→j (t)

w(Ci→j (t)) (6)

where the sum is over all t-step paths between i and j . The weight w(Ci→j ) is the probability
for the walker of going from i to j following exactly the path w(Ci→j ):

w(Ci→j (t)) =
∏

(k,l)∈Ci→j (t)

pkl (7)

the product being over all the t links belonging to the path.
The calculation of all Pij (t), which is straightforward as far as relatively small graphs

are concerned, for large or infinite graphs becomes practically impossible and, above all, of
little significance. In fact, for large systems we are mainly interested in global and collective
properties as typically happen in statistical physics. Therefore, a small subset of all these
quantities is usually chosen, together with some other related to them, which give an effective
physical description of the random walker behaviour. The most relevant of them is from many
points of view the probability Pii(t) of returning to the starting point after t steps, also called
the random walk autocorrelation function. As we will see, its asymptotic behaviour gives the
most direct characterization of the large scale topology for infinite graphs. A related quantity
is the average number Pii of returns to the starting point i, which can be generalized to the
average number Pij of passages through j starting from i:

Pij ≡ lim
t→∞

t∑
k=0

Pij (k), (8)

where the limit can be infinite.
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The mean displacement ri(t) from the starting site i after t steps is deeply related to the
diffusion properties and is defined as

ri(t) ≡
∑

j

rijPij (t). (9)

Note that, unlike the case of random walks in continuous Euclidean space, here we consider r
instead of r2, the latter having no particular significance in the absence of a Euclidean metric.

The quantities introduced up to now are not ‘sensible to the history’. Indeed, we can
in principle determine all of them simply by considering the situation of the walker at time
t regardless of his previous behaviour. In order to keep track of what happened before the
instant t, a different class of functions is introduced, starting with the first passage probability
Fij (t). The latter denotes the conditional probability for a walker starting from i of reaching
for the first time the site j �= i in t steps. For i = j the previous definition would not be
interesting, the walker being at i at t = 0 by definition. Therefore, one defines Fii(t) to be
the probability of returning to the starting point i for the first time after t steps and one sets
Fii(0) = 0. In spite of the deeply different nature of P and F, a fundamental relation can be
established between them if all time steps from 0 to t are taken into account (in other words,
we have to give up the time locality):

Pij (t) =
t∑

k=0

Fij (k)Pjj (t − k) + δij δt0. (10)

This can be easily obtained by considering that each walker which is at j at time t only has
two possibilities: either it gets there for the first time, or it has reached j for the first time at a
previous time k and then it has returned there after t − k steps. The first passage probability
is in turn connected to other meaningful history dependent quantities. The probability Fij of
ever reaching the site j starting from i (or of ever returning to i, if i = j ) is given by

Fij =
∞∑
t=0

Fij (t). (11)

By Si(t) we denote the average number of different sites visited after t steps by a walker
starting from i. Its relation to Fij (t) is

Si(t) = 1 +
t∑

k=1

∑
j

Fij (k). (12)

Finally, the first passage time tij , i.e. the average time at which a walker starting from i, and
passing at least once through j , reaches j for the first time (or returns for the first time to i, if
i = j ) is

tij = lim
t→∞

∑t
k=0 kFij (k)

Fij

. (13)

The simple random walk can be modified to give a richer behaviour and to describe more
general physical problems. Indeed, one can introduce anisotropic jumping probabilities by
substituting in (4) the adjacency matrix with a ferromagnetic coupling matrix:

pij = Jij

Ii

= (I−1J )ij , (14)

where Iij = Iiδij and Ii = ∑
k Jik . Depending on the specific properties of Jij , this can

produce only local effects or introduce a global bias which destroys the leading diffusive
behaviour giving rise to transport phenomena.
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Moreover, one can relax the constraint of jumping at each time step by introducing waiting
and traps on the sites. The jumping probabilities are then modified to

pi,j = Ji,j + wiδi,j

Ii + wi + di

, (15)

where both wi and di are real positive numbers. From (15), wi/(Ii + wi + di) is the probability
for the walker to stay on site i instead of jumping away and di/(Ii + wi + di) is the probability
of disappearing (or dying, or being trapped forever) at site i. As we will see later, waiting
only affects the short time behaviour, while traps can also dramatically modify the long time
asymptotic properties.

4. The generating functions

Even if we consider only the few fundamental quantities devised at the end of the last
section, their direct calculation can be in practice a hard or impossible task on general graphs.
However, a powerful indirect mathematical technique exists allowing us to overcome a series
of typical difficulties: this is the discrete Laplace transform, which maps a time function onto
its generating function. The generating function f̃ (λ) of f (t) is defined by

f̃ (λ) =
∞∑
t=0

λtf (t), (16)

where λ is a complex number. The inverse equation giving f (t) from f̃ (λ) is

f (t) = ∂t f̃ (λ)

∂λt

∣∣∣∣
λ=0

. (17)

This equation is useful as far as we are interested in small t behaviour, but it becomes
absolutely ineffectual in the study of asymptotic regimes for t → ∞. In this case a very
powerful tool is provided by the Tauberian theorems, relating the singularities of f̃ (λ) to the
leading large t behaviour of f (t). We give here a rather general Tauberian theorem, which is
particularly useful when dealing with random walks. The main assumption we make concerns
the analytical form of the leading singularity: we only consider power laws and logarithmic
behaviour, since all cases discussed in this paper as well as all physically meaningful cases
belong to this class. Suppose that f̃ (λ) has its singularity nearest to λ = 0 in λ = r and that
f̃ (r − ε), for ε → 0+, goes as

f̃ (r − ε) ∼ h(ε) + const
∞∏
i=0

(i ln(1/ε))α(i), (18)

where i ln x ≡ ln i−1 ln x, with 0 ln x ≡ x and h(ε) is finite for ε → 0+.
Then, for t → ∞

f (t) ∼ const′r−t

∞∏
i=0

i lnβ(i)(t), (19)

where β(i) are related to α(i) by

β(i) =
{

α(0) − 1 for i = 0
θ(i − m)(α(i) + 1) − 1 − δi,mI (d̃/2) otherwise

(20)

where

m = min{i � 0|β(i) �= −1} (21)
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and

I (d̃/2) =
{

1 if d̃/2 is integer

0 otherwise.
(22)

The const′ is in general a function of const and of all the exponents appearing in the previous
formulae. We do not give here its rather involved explicit expression, since it is not relevant
for the purposes of this paper.

The generating functions are usually easier to calculate, since they allow us to exploit
some peculiar properties of random walk functions. Moreover, a series of relevant random
walk parameters which are non-local in time, can be obtained directly from a generating
function, without calculating the corresponding time dependent quantities. A good example
is given by Pij , Fij and tij which are related to P̃ ij (λ) and F̃ ij (λ) by

Pij = lim
λ→1−

P̃ ij (λ) (23)

Fij = F̃ ij (1) (24)

tij = lim
λ→1−

∂ log F̃ ij ((λ)

∂λ
. (25)

The basic property of random walk generating functions arises from the deconvolution of
equation (10), which after some straightforward steps becomes

P̃ ij (λ)F̃ ij (λ)P̃ jj (λ) + δij . (26)

In other words, the relation which was non-local in time becomes local in λ. As we will see
in practical application, many iteration techniques for the analytical calculation of generating
functions are based on this property.

5. Random walks on finite graphs

Finite graphs consist of a finite number of sites and links. In principle, every physical structure
is composed of a finite number of elements, but it is well known that a series of behaviour
occurring in macroscopic systems is better described in the thermodynamic limit. Indeed, the
typical singularities and power laws characterizing phase transitions and asymptotic regimes,
such as large scale, long times, low temperature and low frequency behaviour, can only be
found on infinite graphs.

However, finite graphs are appropriate when dealing with mesoscopic structures and
finite size effects. The random walk problem on finite graphs is simplified by the finiteness
of the adjacency matrix. In fact, the analytical study is reducible to a spectral problem on
a real finite-dimensional vector space, and numerical simulations are easily implemented by
Monte Carlo techniques.

Let us first consider the case of a random walk without traps, whose jumping probabilities
are given by (15) with di = 0 ∀i. The matrix elements pij satisfy the relations

pij � 0 ∀i, j (27)

N∑
j=1

pij = 1 ∀i (28)

defining a stochastic matrix.
The stochastic matrices we are considering exhibit different properties according to some

general features of the graph and of the jumping probabilities [3]. We distinguish two cases:
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1. If G is not bipartite, or if it has a staying probability on at least one site, then it
has only one eigenvalue pmax with maximal modulus and pmax = 1. Moreover, the
eigenvector corresponding to pmax has the same entry on each site (usually one chooses
vmax = (1, 1, 1, . . . , 1) for simplicity).

2. If G is bipartite without staying probabilities, then the spectrum of p is symmetric with
respect to the origin of the complex plane. Therefore, in addition to pmax it has a second
maximal modulus eigenvalue pmin = −1. The eigenvector vmax has the same properties
as the previous case, while vmin has all entries on V1 equal to the same number v and all
entries on V2 equal to −v (usually one chooses v = 1).

In case 1, one can easily show that the random walk is ergodic, i.e. that it admits limit
probabilities for t → ∞:

P ∞
ij = lim

t→∞ Pij (t) ∀i, j (29)

and that

P ∞
ij = 1

N
∀i, j. (30)

This means that, independently of the initial conditions, the asymptotic probabilities are the
same over all the graph sites. Moreover, this uniform limit value is reached exponentially
and the exponential decay of each matrix element is no slower than pt

2, p2 being the second
greatest eigenvalue of pij .

In case 2, the random walk is not ergodic. In particular, we have

Pij (t) = 0 (31)

for all t such that t − rij is odd. On the other hand, considering for each couple of sites i and
j only the values t ′ij of t having the same parity as rij , one can show that

P ∞
ij = lim

t ′ij →∞
Pij (t

′
ij ) ∀i, j (32)

with

P ∞
ij = 2

N
∀i, j (33)

and the limit is reached exponentially as in case 1.
Similarly, one can easily prove that

lim
t→∞ Fij (t) = 0 ∀i, j (34)

and

lim
t→∞ Si(t) = N ∀i (35)

the limit values being reached exponentially.
Moreover,

Pij = ∞ ∀i, j (36)

Fij = 1 ∀i, j (37)

and

tij < ∞ ∀i, j. (38)

The introduction of at least one trap, setting di > 0 for at least one site i in (15),
dramatically changes the random walk behaviour. The jumping probabilities matrix p is no
longer stochastic, since condition (28) is not satisfied. However, condition (27) (i.e. non-
negativity) still holds, implying relevant properties. We can still distinguish between cases 1
and 2, but the corresponding properties are modified as follows:
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1. If G is not bipartite, or if it has a staying probability on at least one site, then it has only
one eigenvalue pmax with maximal modulus and pmax < 1. Moreover, the entries vmax i

of the eigenvector vmax, corresponding to pmax, have the same sign, and vmax is the only
eigenvector having such a property.

2. If G is bipartite without staying probabilities, then the spectrum of p is symmetric with
respect to the origin of the complex plane. Therefore, in addition to pmax < 1 it has a
second maximal modulus eigenvalue pmin = −pmax. The eigenvector vmax has the same
properties as the previous case, while vmin can be chosen in such a way that all its entries
vmin i on V1 are equal to vmax i and all its entries vmin j on V2 are equal to −vmax j .

In both cases the random walk is ergodic and the limit probabilities vanish:

P ∞
ij = 0 ∀i, j. (39)

However, in case 2 the time parity still has to be taken into account and (31) holds. Moreover,
the asymptotic decay is exponential and no slower than pt

max. Finally, as for the other random
walk functions we get

lim
t→∞ Fij (t) = 0 ∀i, j (40)

lim
t→∞ Si(t) < N ∀i (41)

the limit values being reached exponentially,

Pij < ∞ ∀i, j (42)

Fij < 1 ∀i, j (43)

tij < ∞ ∀i, j. (44)

6. Infinite graphs

When dealing with macroscopic systems, composed of a very large number N of sites, one
usually takes the thermodynamic limit N → ∞. This means that we have to consider infinite
graphs, i.e. graphs composed by an infinite number of sites. This is particularly convenient
for two main reasons:

• First of all, a single infinite structure effectively describes a very large (infinite, indeed)
number of large structures having different sizes, but similar geometrical features.

• The singularities in thermodynamic potentials typical of critical phenomena as well as a
series of universal asymptotic behaviour only occur on infinite structures.

As for random walks on large real structures, the time dependence of physical quantities
exhibits different features according to the time scale which is considered. For very long
times, the walker can explore every site and its behaviour is described by the finite graph
laws introduced in the previous section. However, if the time is long enough to explore large
portions of the system, but still too short to experience the finite size effects, many significant
quantities are quite insensitive to local details and exhibit power law time dependence with
universal exponents. Often, this is the most interesting regime in physical applications. On
infinite graphs, this is the true asymptotic regime even for very large times; therefore, we
can reproduce the universal behaviour of a huge variety of finite large structures simply by
considering infinite graphs with similar topological features.
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To deal with infinite graphs, some further mathematics has to be introduced. In
particular, we need tools to ‘explore’ large scale topology. For this purpose, we define
the generalized Van Hove spheres (GVHS): a GVHS So,r of centre o and radius r is the
subgraph of G, given by the set of vertices Vo,r = {i ∈ V |ri,o � r} and by the set of links
Eo,r = {(i, j) ∈ E|i ∈ Vo,r , j ∈ Vo,r}.

Let us use |S| to denote the number of elements of a set S. Then |Vo,r |, as a function of
the distance r, describes the growth rate of the graph at the large scales [4]. In particular, a
graph is said to have polynomial growth if ∀o ∈ VX ∃c, k, such that

|Vo,r | < c rk. (45)

For a graph satisfying (45), we define the upper growth exponent d+
g and the lower growth

exponent d−
g as

d+
g = inf{k||Vo,r | < c1 rk,∀o ∈ V } (46)

and

d−
g = sup{k||Vo,r | > c2 rk,∀o ∈ V }. (47)

If d+
g = d−

g , which usually happens on physically interesting structures, we call them the
growth exponent dg , or the connectivity dimension.

The connectivity dimension dg is known for a large class of graphs: on lattices, it coincides
with the usual Euclidean dimension d, and for many fractals it has been exactly evaluated [5].
In general, we can think of it as the analogue of the fractal dimension, when the chemical
distance metric is considered instead of the usual Euclidean metric.

Infinite graphs are too general to describe systems of physical interest. Indeed, the discrete
structures usually studied in physics are characterized by some important properties, often
implicitly assumed in the literature, which can be translated into mathematical requirements:

(a) We consider only connected graphs, since any physical model on disconnected structures
can be reduced to the separate study of the models defined on each connected component
and hence to the case of connected graphs.

(b) Since physical interactions are always bounded, the coordination numbers zi , representing
the number of neighbours interacting with the site i, have to be bounded; i.e. ∃zmax | zi �
zmax∀i ∈ V .

(c) Real systems are always embedded in finite dimensional spaces. This constraint requires
for the graph G the conditions:
(1) G has a polynomial growth (definition (45))
(2)

lim
r→∞

|∂Vo,r |
|Vo,r | = 0 (48)

where ∂Vo,r denotes the border of Vo,r , i.e. the set of points of Vo,r not belonging
to Vo,r−1 (the existence itself of the limit is a physical requirement on G). This
condition is equivalent to requiring that boundary conditions are negligible in the
thermodynamic limit.

Note that some graphs studied in the physical literature, such as the Bethe lattice, do not
satisfy (1) and (2), while many random graphs do not fulfil (b).

For a large class of physically interesting graphs we have considered so far, conditions (1)
and (2) appear to be equivalent. However for the equivalence of the two conditions a rigorous
result is still lacking. A graph satisfying (a), (b) and (c) will be called a physical graph.
Conditions (a) and (b) represent strong constraints on G and, as we will see later, they have
very important consequences.
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7. Random walks on infinite graphs

Considering random walks on infinite structures, some further mathematical constraints are to
be introduced to describe physical situations.

First of all, the problem of uniform boundedness comes into play. Indeed, in (14) the
conditions

∃Jmin, Jmax > 0 | Jmin � Ji,j � Jmax ∀i, j (49)

together with (b) are usually required to exclude the presence of a global bias, which would
generate a non-diffusive behaviour.

Moreover, in (15), in the presence of waiting and traps, analogous considerations lead to
the following conditions:

∃wmin, wmax > 0| either wi = 0, or wmin � wi � wmax ∀i (50)

∃dmin, dmax > 0| either di = 0, or dmin � di � dmax ∀i. (51)

In the case of finite graphs, the possibility of associating with any matrix an operator acting
on a finite-dimensional vector space allowed us to obtain very general and rigorous results. In
the infinite case, it is in general impossible to associate a linear operator acting on a Hilbert
space with any matrix. However, when (b) holds, the jumping probabilities matrix is quite
particular: indeed, it only has a limited number of non-vanishing entries in each row and
column. Due to this property, the elements of a matrix product are given by finite sums, as
in the finite graphs case, instead of being sums of series. Therefore, the typical convergence
problems of infinite-dimensional space do not arise, allowing for a simple and effective study
of random walk properties.

Despite the increased mathematical complexity, many general results about infinite graphs
have been rigorously proven. Some have correspondents in the finite graphs case, but most of
them concern quantities and properties which cannot even be defined on finite structures. The
rest of this section is devoted to the former: following the same format used in section 5 we
summarize the main differences with respect to the finite case. The new properties arising in
the thermodynamic limit will be discussed in the following sections.

First of all, let us consider random walks without traps on infinite graphs satisfying (a),
(b), (49) and (50). It can be shown that

P ∞
ij = lim

t→∞ Pij (t) = 0 ∀i, j (52)

even for bipartite graphs. However, for bipartite graphs without staying probabilities, we still
have

Pij (t) = 0 (53)

for all t such that t − rij is odd. Therefore, to study the large times asymptotic behaviour, as in
the finite case we usually consider, for any given couple of sites i and j , only the values t ′ij of t
having the same parity as rij . Unlike the finite case, the limit in (52) in general is not reached
exponentially. Indeed, if (c) also holds, i.e. for physical graphs, the asymptotic behaviour is
typically a power law, whose exponent only depends on topology, as we will discuss in details
in the next sections. Note that the widely studied case of Bethe lattices, not satisfying (c), is
still characterized by an exponential decay.

Similarly, one can easily prove that

lim
t→∞ Fij (t) = 0 ∀i, j (54)
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and

lim
t→∞ Si(t) = ∞ ∀i, (55)

the asymptotic behaviour being always bounded from above by t.
As for the quantities concerning the number of visits and the first visit probabilities, the

situation is far more complex. Indeed, dramatically different behaviour can occur, according
to the graph topology. In particular

Pij = ∞ ∀i, j or <∞ ∀i, j (56)

Fij = 1 ∀i, j or <1 ∀i, j (57)

and

tij < ∞ ∀i, j or =∞ ∀i, j. (58)

The classification of infinite graphs according to this possible behaviour is the subject of the
next section.

8. Recurrence and transience: the type problem

On finite graphs, in the absence of traps, the probability of ever reaching (or returning to) a
site, Fij , is always 1. This means that the walker surely visits each site. This probability can
be lowered only by adding traps (where the walker can be destroyed), but in this case the total
probability is not conserved, i.e. the walker asymptotically disappears. On infinite graphs,
a third possibility arises, which is expressed in (56) and (57): the walker can escape forever
from its starting point, or never reach a given site, even in the absence of traps.

This phenomenon was first noticed by Polya in 1921 on lattices: he showed that, while
in one and two dimensions Fij = 1, for d � 3 Fij < 1 [6]. Ever since, the former case has
been called recurrent and the latter transient. Transience is an exclusive property of infinite
graphs and it is fundamentally due to large scale topology. In other words, in the transient
case, it happens that the number of paths leading the walker away from its starting point is
large enough, with respect to the number of returning paths, to act as an asymptotic trap (still
conserving the total probability).

As we will see in a while, transience and recurrence of random walks, when (49) and (50)
are satisfied, depend only on the graph topology. Therefore they are intrinsic properties of a
discrete structure and the classification of infinite graphs according to them is also known as
the type problem.

Let us define the problem mathematically. First of all, a very general theorem on Markov
chains states the following:

∃i, j ∈ G | Fij = 1 ⇒ Fhk = 1 ∀h, k ∈ G (59)

(where the sites can coincide). This means that recurrence is point independent, or, in other
words, that if a walker surely reaches a point j starting from a given point i, then it surely
reaches any point k starting from any point h. It is straightforward to see that an analogous
result follows for the case Fij < 1. Therefore, recurrence and transience are global properties
of a random walk.

Another important result relates Fij and Pij . Indeed, from (23), (24) and (26), it follows
that

Fij = 1 ⇔ Pij = ∞ (60)
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and

Fij < 1 ⇔ Pij < ∞ (61)

i.e., a walk is recurrent (transient) if and only if any site is visited an infinite (finite) number
of times. The latter can be taken as an alternative definition of recurrence and transience.
However, as we will see, the situation is more complex when considering averages over all
the sites. A consequent property concerns the way the walker explores the sites of G. Indeed,
it can be shown that

Fij = 1 ⇔ lim
t→∞

Si(t)

t
= 0 (62)

while

Fij < 1 ⇔ 0 < lim
t→∞

Si(t)

t
< 1. (63)

In the first situation, where the number of distinct visited sites increases slower than the
number of steps, is sometimes called compact exploration, since the subgraphs of the visited
sites present a negligible number of ‘holes’.

Recurrent graphs exhibit a further relevant property: one can show that

lim
λ→1−

P̃ ij (λ)

P̃ hk(λ)
= lim

t→∞
Pij (t)

Phk(t)
= zj

zk

∀i, j, h, k. (64)

The most important properties in the type problem concern its invariance with respect to a
wide class of dynamical and topological transformations, establishing its independence on the
graph details.

First of all, consider two different random walks (without traps) on the same graph G,
one (W) defined by the ferromagnetic coupling matrix Jij and by the waiting probabilities
wi , and the other (W ′) by J ′

ij and w′
i . It can be shown [7] that, if both satisfy (49) and

(50), then W is recurrent if and only if W ′ is. In other words, any local bounded rescaling
of ferromagnetic couplings and waiting probabilities leave the random walk type unchanged.
Therefore, provided the previously mentioned boundedness conditions are satisfied, the walk
type only depends on the graph topology.

Moreover, even the local topological details are irrelevant to determining the type of a
graph. Indeed, it is possible to show that recurrence and transience are left invariant by adding
and cutting of links satisfying the quasi-isometry conditions. More precisely, two graphs G and
G′ are called quasi-isometric if there are a mapping ϕ : G → G′ and constants A > 0, B � 0
such that

A−1rij − B � r ′
ϕi,ϕj � Arij + B

for all i, j ∈ G, and

r ′
i ′,ϕG � B

for every i ′ ∈ G′.
If B = 0 then we say that G and G′ are metrically equivalent. Quasi-isometries can

be defined between arbitrary metric spaces and represent the most general local topology
deformations. Typical examples of them are given by the decimation transformations used on
fractals and in real-space renormalization. In some sense, we can consider quasi-isometries
as their extension to general networks.

All results presented so far refer to random walks without traps, i.e. to jumping
probabilities given by (15) with di = 0. The introduction of at least one trap, setting di > 0
for at least one site i, has a very general and simple influence on the random walk behaviour:
indeed transience is left unchanged, while recurrent random walks always become transient.
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9. The local spectral dimension

As well as happening for recurrence and transience properties, large-scale topology affects
the long time dependence of random walk quantities on infinite graphs. Indeed, it has been
known for many years that, on regular (translation invariant) lattices, the exponents of the
asymptotic power laws of random walks only depend on the lattice (Euclidean) dimension d.
For example,

Pii(t) ∼ t−d/2 for t → ∞, ∀i (65)

and

Si(t) ∼ tmin(1,d/2) for t → ∞, ∀i, for d �= 2 (66)

(while, for d = 2, Si(t) ∼ t/ln t). As we mentioned before, these laws typically present
power behaviour even on general physical graphs, and the exponents of such powers can be
used to define a generalized dimension.

Let us consider a random walk without waitings and traps satisfying (49), and suppose
that, for a given i ∈ G

Pii(t) ∼ t−d̃/2 for t → ∞ (67)

then it can be shown that

Phk(t) ∼ t−d̃/2 for t → ∞, ∀h, k (68)

(for bipartite graphs, the usual assumptions on the parity t are understood). This means that the
exponent of the power law is site independent and, therefore, it is a parameter characterizing
the whole random walk. Since d̃ = d on a regular lattice, we can consider it as a dimension
associated with the random walk on G. More precisely, we shall call local spectral dimension
the limit

d̃ = −2 lim
t→∞

ln Pii(t)

ln t
(69)

when it exists.
Note that the existence of this limit for a given i implies it exists and has the same value for

any j ∈ G. Moreover, the definition given in (69) is more general than (67), since it includes
the case of possible multiplicative corrections to the asymptotic behaviour, provided they are
slower than any power law (e.g. logarithmic corrections).

From a historical point of view, the term ‘spectral dimension’ was first introduced by
Alexander and Orbach in 1982 [8], studying the anomalous vibrational dynamics on fractals.
In the same work, they suggested that even the random walks should be ruled by the same
parameter and wrote equation (67). Then the definition was generalized to general networks
by Hattori, Hattori and Watanabe [9]. Later, it was shown that the anomalous dimension
involved in vibrational dynamics is the average spectral dimension [10] we shall discuss in
further sections, which coincides with d̃ only for particular graphs, such as exactly decimable
fractals.

As for the existence of the limit (69), a general theorem is still lacking, but it can be
easily proven that the asymptotic decay of Pii(t) is always bounded from above and from
below by power laws. In any case, on all known cases of random walks on physical graphs,
the local spectral dimension has been shown to exist. Note that for the Bethe lattice, which
does not fulfil the polynomial growth condition, the limit (69) is infinite. From now on, we
shall consider random walks on graphs where d̃ is defined. Then, one can easily derive the
following results:
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• Random walks are recurrent if d̃ < 2 and transient if d̃ > 2. For d̃ = 2, if (67) holds,
random walks are recurrent. However, subleading corrections to the power law can change
the type to transient.

• When (67) holds,

Si(t) ∼ tmin(1,d̃/2) for t → ∞, ∀i, for d̃ �= 2 (70)

otherwise, in general,

lim
t→∞

ln Si(t)

ln t
= min(1, d̃/2) ∀i, for d̃ �= 2. (71)

• When (67) holds,

Fij (t) ∼ tmin(d̃/2−2,−d̃/2) for t → ∞, ∀i, j for d̃ �= 2 (72)

otherwise, in general,

lim
t→∞

ln Fij (t)

ln t
= min(d̃/2 − 2,−d̃/2) ∀i, j for d̃ �= 2. (73)

The case d̃ = 2 is rather particular. Indeed d̃ = 2 is a critical dimension for random walks,
discriminating recurrence from transience. The asymptotic behaviour of Si(t) and Fij (t) have
a different dependence on d̃ for d̃ < 2 and d̃ > 2. In particular, the probability of the first
visit has the same time decay of Pij for d̃ > 2 while it decays faster for d̃ < 2. When d̃ = 2,
the behaviour of Si(t) and Fij (t) is strongly affected by subleading corrections.

As for the type problem, local spectral dimension presents interesting invariance
properties. First of all, it can be shown that waitings satisfying (50) do not affect its value [10].
Moreover, for d̃ < 2, on a given G it is the same for all ferromagnetic couplings satisfying
(49) [9]. Unfortunately, an analogous result has not been proven for d̃ > 2. However, we will
see in later sections that the average spectral dimension also has this universality property.

The introduction of a finite number of traps does not affect d̃ if d̃ > 2. If d̃ < 2 a finite
number of traps (even only one) changes d̃ to d̃ + 1. If the traps are infinite the behaviour is
more complex and depends on their distribution.

10. Averages on infinite graphs

Usually, infinite graphs describing real systems are inhomogeneous, i.e., in mathematical
terms, they are not invariant with respect to a transitive symmetry group. In simpler words,
this means that the topology is seen in a different way from every site. The main effect of
inhomogeneity is that the numerical values of physical quantities are site dependent. Therefore,
one is typically interested in taking averages over all sites. This requires the introduction of
suitable mathematical tools.

First of all, the average in the thermodynamic limit φ̄ of a function φi defined on each site
i of the infinite graph G is defined by

φ̄ ≡ lim
r→∞

∑
i∈So,r

φi

No,r

. (74)

The measure |S| of a subset S of V is the average value χ(S) of its characteristic function
χi(S) defined by χi(S) = 1 if i ∈ S and χi(S) = 0 if i �∈ S. The measure of a subset of links
E′ ⊆ E is given by

|E′| ≡ lim
r→∞

E′
r

No,r

, (75)



R60 Topical Review

where E′
r is the number of links of E′ contained in the sphere So,r . The normalized trace TrB

of a matrix Bij is

Tr B ≡ b, (76)

where bi ≡ Bii . If condition (c) holds, then we can prove [13] that the averages of a bounded
from below function φi are independent of the centre o of the spheres sequence, using the fact
that χi(S) is bounded and that measures of subsets are always well defined.

Now, due to this site independence, we have a good definition of averages which we will
use in dealing with properties of random walks on infinite graphs. As we shall see in the next
section, on inhomogeneous networks the averages of site dependent functions can have a very
different behaviour from their local counterparts, giving rise to rather unexpected phenomena.

11. The type problem on the average

In the last few years it has become clear that bulk properties are affected by the average values
of random walk return probabilities over all starting sites: this is the case for spontaneous
breaking of continuous symmetries [11], critical exponents of the spherical model [12] and
harmonic vibrational spectra [10]. Therefore the classification of discrete structure in terms
of recurrence on the average and transience on the average appears to be the most suitable.
Unfortunately, while for regular lattices the two classifications are equivalent, on more general
networks they can be different and one has to study a type problem on the average [13].

This is defined using the return probabilities on the average P̄ and F̄ , which are given by

P̄ = lim
λ→1−

P̃ (λ) ≡ lim
λ→1−

Tr P̃ (λ) (77)

F̄ = lim
λ→1−

F̃ (λ) ≡ lim
λ→1−

Tr F̃ (λ). (78)

A graph G is called recurrent on the average (ROA) if F̄ = 1, while it is transient on the
average (TOA) when F̄ < 1.

Recurrence and transience on the average are in general independent of the corresponding
local properties. The first example of this phenomenon occurring on inhomogeneous structures
was found in a class of infinite trees called NTD (see section 13.3) which are locally transient
but recurrent on the average [14].

Moreover, while for local probabilities (26) gives

P̃ ii(λ)F̃ ii(λ)P̃ ii(λ) + 1 (79)

an analogous relation for (78) and (77) does not hold since averaging (79) over all sites i would
involve the average of a product, which due to correlations is in general different from the
product of the average. Therefore the double implication F̃ i(1) = 1 ⇔ limλ→1 P̃ i(λ) = ∞ is
not true. Indeed there are graphs for which F̄ < 1 but P̄ = ∞ (an example is shown in figure 1)
and the study of the relation between P̄ and F̄ is a non-trivial problem.

A detailed study of this relation [13] shows that a complete picture of the behaviour of
random walks on graphs can be given by dividing the transient on the average graphs into two
further classes, which are called pure and mixed transients on the average (TOA).

First, considering a ROA graph, it can be proven that if F̄ = 1 then P̄ = ∞. The proof
can be easily generalized to graphs in which there is a positive measure subset S such that:

limλ→1 χ(S)F̃ (λ) = |S|. Indeed in an analogous way it can be proven that

P̄ � lim
λ→1

χ(S ′)P̃ (λ) = ∞ ∀S ′ ⊆ S, |S ′| > 0. (80)
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Figure 1. The ‘haired cube’ graph.

We call mixed transient on the average a TOA graph having a positive measure subset S such
that

lim
λ→1

χ(S)F̃ (λ) = |S|, (81)

while a graph is called pure TOA if

lim
λ→1

χ(S)F̃ (λ) < |S| ∀S ⊆ V, |S| > 0. (82)

Examples of pure TOA graphs are all the d-dimensional cubic lattices with d > 2, while the
‘haired cube’ of figure 1 is a typical mixed TOA graph. Note that a relevant theorem [13]
establishes that for mixed TOA graphs we have P̄ = ∞, while for pure TOA graphs P̄ is
finite. A further important property, characterizing mixed TOA graphs, allows us to simplify
the study of statistical models on these very inhomogeneous structures. It can be shown [13]
that, in this case, the graph G can always be decomposed into a pure TOA subgraph S and a
ROA subgraph S̄ with independent jumping probabilities by cutting a zero measure set of links
∂S ≡ {(i, j) ∈ E|i ∈ Sj ∈ S̄}. The separability property implies that the two subgraphs are
statistically independent and that their thermodynamic properties can be studied separately.
Indeed, in the thermodynamic limit, the partition functions referring to the two subgraphs
factorize [15].

To conclude this section, we note that the same invariance properties of the local type
problem under addition of waiting probabilities, coupling rescaling and quasi-isometries still
hold for the type problem on the average. This means, as for the local case, that recurrence
and transience on the average are intrinsic properties of a graph and not only of a specific
random walk defined on it. On the other hand, the introduction of a finite number of traps does
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not change the type on the average. Note also that a slightly different definition of the type
problem on the average can be found in the mathematical literature [16]; it is more convenient
for the formal development of the theory, but it is not directly related to statistical models on
graphs.

12. The average spectral dimension

The asymptotic time dependence of the return probability on the average can be used to define
a new intrinsic dimension which turns out to be very strictly related to the physical behaviour
of statistical models on graphs [11, 10, 17], as we will briefly discuss in the last section.

Indeed, even if the asymptotic time decay of Pii(t) is always the same for all sites i, when
the graph topology is strongly inhomogeneous it happens that its average over all the sites
decays according to a different law. The average spectral dimension d̄ is defined for physical
graphs, such as the local one in (67) and (69), by

P̄ (t) ∼ t−d̄/2 for t → ∞ (83)

when the asymptotic behaviour is a power law without subleading corrections, or, more
generally, by

d̄ = −2 lim
t→∞

ln P̄ (t)

ln t
. (84)

Note, however, that, differently from the local case, no physical graphs are known, up to now,
where the long time decay is not given by (83). Considerations analogous to those presented
for the local case hold here, concerning the existence of the limit (84). Obviously, in all cases
where the local type is different from the average type, also the local spectral dimension differs
from the average spectral dimension. A typical example, and, historically, the first one, is
given again by NTD (see section 13.3 for a detailed account). However, the relations between
d̄ and the type problem on the average are not the same as in the local case. Indeed, while if
d̄ > 2 the walk is always pure TOA, random walks with d̄ < 2 can be either pure ROA or
mixed TOA.

The most relevant property of d̄ is without any doubt its strong invariance with respect to
a very large class of dynamical and topological transformations, making it a unique universal
parameter associated with a graph G [10, 18].

These transformations can be divided into three main classes:

1. Dynamical transformations leaving the graph topology unchanged. These consist in the
addition of waitings and of a finite number of traps, as well as in bounded local rescaling
of ferromagnetic couplings.

2. Topological transformations modifying the number of links but leaving the sites
unchanged. These include ‘addition transformations’ and ‘cutting transformations’. The
addition transforms consist in adding links joining sites up to an arbitrary but finite
chemical distance from any site, while the cutting transforms are defined to be their
inverse. The most general transformations consist in a combination of addition and
cutting. Note that even an infinite number of links can be modified with respect to the
original graph.

3. Topological rescaling, i.e. topological transformations modifying both links and sites.
The most general topological rescaling can be realized through two independent steps.
The first one is partition and consists in dividing the graph G into an infinite family of
connected subgraphs Gα , with uniformly bounded number of points. The second one is
substitution and consists in generating a new graph G′ by replacing some or all Gα by a
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different (connected) graph Sα , whose number of points ranges from 1 to a fixed Nmax,
and by adding links connecting different Sα in such a way that two generic Sα and Sβ

are connected by some links if and only if Gα and Gβ were. The simplest topological
rescaling occurs when every Sα is composed by just one point. In this case the resulting
graph G� is called the minimal structure of the partition {Gα}.

These three very general classes of geometrical transformations (together with even more
general ones violating conditions (b) and (c) and therefore not discussed here [18]) can be
applied in all possible sequences to a graph, leading to an overall transformation of coupling
strength, number of links and degrees of freedom which does not change its spectral dimension
d̄ . We will call such a transformation an isospectrality.

Note that isospectralities include quasi-isometries as a particular case. Indeed,
isospectralities include most currently used transformations.

As an example, the usual decimation procedure on fractals is a topological rescaling. In
particular, for all exactly decimable fractals (such as e.g. Sierpinski gaskets and T-fractals,
as discussed in the next sections), the minimal structure of the graph coincides with the
graph itself. Again, an isospectrality relates the usual two-dimensional square lattice, the
hexagonal lattice and the triangular lattice, which therefore all have dimension 2. In other
words, isospectralities are the theoretical formalization of the intuitive idea of invariance with
respect to bounded scale perturbations and disorder and the isospectrality classes, defined
as the classes of graphs related by such transformations, are the practical realization of the
apparently abstract concept of non-integer dimension.

Now, since most dynamical and thermodynamical properties of generic discrete structures
depend only on d̄ , isospectralities provide a very powerful tool to reduce a very complicated
geometrical structure to the simplest one having the same d̄. The latter turns out to be much
simpler to study and still presents the same universal properties.

Moreover, an isospectrality can not only be used to reduce and simplify structures and
problems, it can also be applied, with the opposite aim, to build complicated structures with
controlled dynamical and thermodynamical properties, starting from simple deterministic
geometrical models. This is the point of view of spectral dimension engineering, providing a
very interesting field of possibilities to polymer physicists and material scientists dealing with
non-crystalline materials. In figure 2 we give explicit examples of isospectral structures
obtained by applying isospectral transformations (without long range couplings) to the
T-fractal and to the square lattice.

On macroscopically inhomogeneous graphs, it can happen that the average value of Pii(t)

on infinite subgraphs of G with positive measure decays with a power law different from (83)
[19]. In such cases, it is interesting to look for the maximal (positive-measure) subgraphs
having no (positive measure) parts with different power law decay. These are called spectral
classes and each is characterized by its own spectral dimension. A theorem rather relevant
in physical applications establishes that spectral classes can be separated from each other by
cutting a zero-measure set of links, implying the same statistical independence property we
discussed for mixed TOA graphs [19].

13. A survey of analytical results on specific networks

Apart from the well-known case of regular lattices, where it is completely solved [20], the
random walk problem has been studied analytically only on some specific classes of infinite
graphs. In these cases, one usually focuses on the asymptotic properties of random walk
autocorrelation functions and on the calculation of the local and average spectral dimension.
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Figure 2. Example of isospectral structures obtained applying isospectral transformations to the
T-fractal and to the square lattice.

As we discussed in previous sections, these are the most important quantities in statistical
physics and thermodynamics. On lattices, the random walk problem is solved by using the
translation invariance of the structure, and this allows us to apply powerful mathematical tools,
such as the Fourier transform. On general graphs these methods do not apply. Therefore due to
the lack of translation invariance, one has to introduce new and alternative techniques, which
can be grouped into three main classes: renormalization techniques, combinatorial techniques
and mixed techniques. In the next subsections we will review recent and significant results
obtained with these techniques.

13.1. Renormalization techniques

Renormalization techniques have been successfully applied to deterministic fractal networks,
where one can take advantage of the decimation transformations which connect two
consecutive generations. In particular, a well-studied class of fractals is that of exactly
decimable fractals. On these structures, exact renormalization group calculations based on a
real space decimation procedure allow us to obtain all the relevant random walk quantities.

Let us consider a random walk without traps and sources defined by the jumping
probabilities (4) and let us write the master equation for the probability P0i of being at
site i after t steps for a random walker starting from an origin site 0 at time 0:

P0i (t + 1) − P0i (t) =
∑

j

A0j

(
P0j (t)

zj

− P0j (t)

zi

)
+ δi0δt0. (85)

Equation (85) can be written in terms of the generating function P̃ ij (λ) when λ → 1− by
setting λ = 1 − ε, writing

P̃ ij (ε) =
∞∑
t=0

(1 + ε)−tPij (t) (86)

and taking ε =→ 0:

εP̃ 0i (ε) =
∑

j

A0j

(
P̃ 0j (ε)

zj

− P̃ 0j (ε)

zi

)
+ δ0i . (87)
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Figure 3. The Sierpinski gasket.

Figure 4. The T-fractal.

Note that the system (87) is inhomogeneous and corresponds to a Cauchy problem, which has
only one solution. The behaviour of such a solution for ε → 0 is what we need to obtain
the local spectral dimension d̃, as defined in (67), through the Tauberian theorems. On the
other hand, to calculate the average spectral dimension d̄ we will need to average over all
starting points the solution of equation (87), strongly modifying its asymptotic behaviour on
inhomogeneous graphs, as we will see in the following.

Exactly decimable fractals are a restricted class of self-similar structures (i.e. not all
self-similar structures are exactly decimable) which are geometrically invariant under site
decimation. This invariance is explicitly applied in analytical calculations for random walks.
A geometrical structure is decimation invariant if it is possible to eliminate a subset of points
(and all the bonds connecting these points) obtaining a network with the same geometry as
the starting one. From a mathematical point of view this corresponds to the possibility of
eliminating by substitution a set of equations from system (85) or (87) obtaining a system
which is similar to the initial one after a suitable redefinition of the coupling parameters.
Examples of exactly decimable fractals are the Sierpinski gasket (figure 3) [25–28], the
T-fractal, shown in figure 4 [29, 30], the branched Koch curves, shown in figure 5 [31]. In
general, all deterministic finitely-ramified fractals are exactly decimable. Note that the exact
decimation is a particular case of isospectrality, as we discussed in previous sections.

Let us consider now the general procedure to decimate the set of equation (85). After
eliminating a set of points and substituting the corresponding equation, one finds

ε → ε′(ε) ∼ a2ε. (88)

The presence of the term δi0 in (87) requires a redefinition of the quantities P̃ ij (ε) to assure
that, even after the decimation, the initial condition will correspond to the probability of being
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Figure 5. The branched Koch curve.

at a fixed site equal to 1. One introduces a new parameter c and writes the transformation law
for P̃ ij (ε) as

P̃ ij (ε) → P̃ ′
ij (ε

′) ∼ 1

c
P̃ ij (ε). (89)

From the rescaling of ε and P̃ ij (ε), the local spectral dimension d̃ is obtained by using a
suitable expression for P̃ 00(ε):

P̃ 00(ε) ∼ εd̃/2−1, (90)

which holds only for d̃ < 2. This is always the case for exactly decimable fractals. Using
expression (90) one easily finds

d̃ = 2
log a2/c

log a2
. (91)

As for the average spectral dimension d̄ , by using the relation between equation (87) and the
equation for harmonic oscillations to be discussed later [21], one has that

d̄ = log r

log a
, (92)

where r is the decimation ratio used in the renormalization procedure. Therefore d̃ = d̄ if

r = a2/c. (93)

This can be shown to be the case for all exactly decimable fractals, using results obtained [9]
for the Gaussian model.

Equation (92) allows us to calculate the spectral dimension on all exactly decimable
fractals, once the decimation procedure is identified, recovering known results.

One of the most studied fractals is without any doubt the Sierpinski gasket [25–28] and
its generalizations. For the simplest case one has r = 3 and a = √

5, leading to

d̃ = 2
log 3

log 5
. (94)

For d-dimensional generalized Sierpinski gaskets, which are built from a d-dimensional
hypertetrahedron of side length b filled with b layers of smaller hypertetrahedra of unit site
length, Hilfer and Blumen [26] have shown that for b = 2

d̃ = 2
log d + 1

log d + 3
(95)

and for b = 3

d̃ = 2
log((d + 1)(d + 2)/2)

log((d + 2)(2d2 + 9d + 19)/(4d + 6))
. (96)
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Figure 6. Building process of a bundled graph.

Due to the self-similarity of the structure, the return probabilities on the Sierpinski gasket
show a remarkable effect, which has been pointed out in [32]. Indeed, the coefficients have
an oscillatory behaviour, which is given by

P00(t) = t−d̃/2F

(
log t

log 5

)
, (97)

where F is a periodic C∞-function of period 1 whose Fourier series is given by

F(x) =
∞∑

k=−∞
�

(
1 − log 3

log 5
+

2πki

log 5

)−1

exp(2πki x). (98)

Interestingly, it can be shown that the oscillation of the coefficients disappears in the probability
of return on the average.

The renormalization techniques can be applied to all exactly decimable fractals. For
example, for the T -fractal [29, 30], which is a particular case of hierarchical combs [33], one
has r = 3 and a = √

6.

13.2. Combinatorial techniques

Renormalization procedures cannot be applied on non-self-similar graphs. Therefore one
has to develop alternative techniques to study the random walk problem. This is the case of
bundled structures [22, 23], a large class of very interesting graphs used in condensed matter
as realistic models for the geometry and dynamics of polymers and other inhomogeneous
systems. Given two graphs B and F , not necessarily different, and a site F of F , we call a
bundled graph with base B and fibre F the graph built by joining to each site of B a copy
of F in such a way that F is the only site B and F have in common (figure 6). Examples
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Figure 7. A comb polymer.

Figure 8. A brush polymer.

of bundled structures are comb polymers [34] (figure 7), brush polymers, shown in figure 8,
and many kinds of branched aggregates (figure 9). For these graphs a purely combinatorial
technique allows us to calculate the asymptotic properties of the random walk autocorrelation
functions.

Let us consider a walker starting from a point belonging to the base and let us restrict
ourselves to base graphs with constant coordination number zB. By decomposing the motion
of the walker on the fibre and on the base, one can obtain

P0(t) =
∞∑

tB=0

∞∑
t1=0

· · ·
∞∑

tB+1=0

PB(tB)

(
zB

zB + zF

)tB

P ′
F (t1) · · · P ′

F
(
ttB+1

)
δ
t,tB+

∑tB+1
i=1 ti

, (99)

where P ′
F refers to a random walk on F with a trap at the starting point of F . In terms of the

generating functions equation, (99) becomes

P̃ 0(λ) =
∞∑

tB=0

PB(tB )

(
λzB

zB + zF

)tB

(P̃ ′
F (λ))tB+1 = P̃ ′

F (λ)P̃ B(λ′) (100)

with

λ′ ≡ λzB

zB + zF

P̃ ′
F (λ) (101)
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Figure 9. Further examples of bundled graphs.

and

P̃ ′
F (λ) =

(
1 − zF

zB + zF

(1 − (P̃F (λ))−1)

)−1

(102)

with P̃F (λ) being the generating function of the probability of returning to the starting point
F on F without the trap. From these relations one obtains the values for the local spectral
dimension on general bundled graphs:

d̃ =


d̃F if d̃F � 2

4 − d̃F if d̃F � 2 and d̃B � 4

d̃F + d̃B − d̃F d̃B
2 if d̃F � 2 and d̃B � 4,

(103)

where d̃B and d̃F are the local spectral dimensions of the base and of the fibre. If the
coordination number of the base is not constant, it can be shown that this amounts to introducing
waiting probabilities on the points connecting the fibre and the base, which, as shown in the
previous section, does not change the value of the spectral dimension.

As for the average spectral dimension, it is easy to show that if the fibre is an infinite
graph, the average spectral dimension of the whole graph is the spectral dimension of the fibre.
On the other hand, if the fibre is a finite graph, the average spectral dimension coincides with
that of the base.

From equations (100), (102) one also obtains the asymptotic laws for the probability of
returning to the starting point, which on these structures can contain logarithmic corrections.
Indeed, writing

P0(t) ∼
∞∏
i=0

i lnβ(i)(t) (104)

and setting

m = min{i � 0|β(i) �= −1} (105)
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and

I (d̃/2) =
{

1 if d̃/2 is an integer

0 otherwise
(106)

one has

(a) if d̃B < 4 and d̃F < 2

β(i) =



−1 for 0 < i < m(
1 − d̃B

2

) [
βF (mF ) + I

(
d̃F
2

)] − I
(

d̃F
2

)
for i = mmF(

1 − d̃B
2

)
βF (i) + θ(i − mF − mB)βB(i − mF )

+ δi−mF ,mBI
(

d̃
2

) − δi,mI
(

d̃
2

)
otherwise,

(107)

where mB and mB refer to the base and to the fibre respectively while m refers to the
whole graph and is determined by

m = mF + δd̃B,2mB. (108)

(b) If d̃B > 4 and d̃F < 2

β(i) =
{

−βF (i) − 2δi,mF I (d̃F/2) for i � mF

βF (i) for 0 < i < mF .
(109)

(c) If d̃B = 4 and d̃F < 2 and dB > −1,

β(i) has to be determined as in (a).
(d) If d̃B = 4 and d̃F < 2 and mB < −1,

β(i) has to be determined as in (b).
(e) If d̃F > 2

β(i) = βF (i) ∀i. (110)

The case d̃F = 2 has to be treated separately, as the case d̃F < 2 if the fibre is a recurrent
graph or as the case d̃F > 2 if it is transient.

Another interesting way of combining two graphs to obtain a more complex structure is
the Cartesian product. The Cartesian product of two graphs X, Y has the vertex set X × Y ,
and two pairs xy, x ′y ′ are adjacent if x ∼ x ′ and y = y ′, or x = x ′ and y ∼ y ′. An example
of an interesting Cartesian product is that of the Toblerone graph [35], shown in figure 10,
which is obtained from the product of a line with a Sierpinski gasket. Using combinatorial
techniques analogous to those presented for bundled graphs, it can be shown that the local
and the average spectral dimensions on the whole graph are the sums of the corresponding
dimensions of the two initial graphs [7].

13.3. Mixed techniques

The random walk problem in some very interesting cases of graphs cannot be studied simply
by one of the above cited techniques and it requires instead a ‘mixed’ use of the two, which
gives rise to very interesting phenomena. Indeed, the first example of a difference between the
local and the average spectral dimension, the ‘dynamical dimension splitting’, was observed
on the quasi-self-similar graphs NTD , where the asymptotic properties of the random walk
were found by a mixed technique [14].

The fractal trees known as NTD [36] can be recursively defined as follows: an origin point
O (figure 11) is connected to a point 1 by a link, of unitary length; from 1, the tree splits into
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Figure 10. The Toblerone graph.

Figure 11. NTD graph.

k branches of length 2 (i.e. consisting of two consecutive links); the ends of these branches
split into k branches of length 4 and so on; each endpoint of a branch of length 2n splits into k
branches of length 2n+1.

As one can easily verify, NTD are not exactly decimable and therefore the simple
decimation techniques cited above cannot be applied. Indeed, after a simple decimation
starting from the origin O, one obtains k copies of the original structure joined together
at a point instead of the same NTD . However, NTD are invariant under a more complex
transformation T = D ·C, consisting of the product of a cutting transform C and a decimation
D, which can be described as follows. Let us cut the log of the tree at point 1 and separate the
k branches (cutting transform). Now, each branch can be obtained from the initial NTD by
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a dilatation with a factor 2. Eliminating all branches but one and decimating it (decimation
transform), one obtains the original NTD .

The T transform can now be used to solve the random walk problem. Let us sketch the
main points of the calculation. The cutting transform gives a relation between random walks
on the whole tree and random walks on one of its branches; more precisely one relates P̃ tree

O (λ),
the generating function of the probability of returning to point O after a random walk on the
NTD tree, and P̃ branch

1 (λ), the generating function of the probability of returning to the starting
point 1 after a random walk on one of the branches. This relation is given by [14]

P̃ tree
O (λ) = P̃ branch

1 (λ) + k

2λP̃ branch
1 (λ) + k

. (111)

Now, the decimation transformation is performed using a time-rescaling technique. Indeed,
the motion of the random walker on the branch considered only after an even number of steps
can be exactly mapped in the motion of a random walker on the tree after the introduction of
a staying probability pii = 1/2 at every site i. This equivalence can be translated into terms
of generating functions through the substitutions

P̃O(λ) → λ

2 − λ
P̃O

(
2

2 − λ

)
(112)

λ → λ2. (113)

Equations (112) and (113) can be used to rewrite (111) as

P̃O
tree

(λ) =
2

2−λ2 P̃O
tree( λ2

2−λ2

)
+ k

(1 − λ2) 2
2−λ2 P̃O

tree( λ2

2−λ2

)
+ k

. (114)

Choosing a suitable power law expression for the singularity of P tree
OO (λ) for λ → 1− [14] we

obtain

d̃ = 1 +
log k

log 2
. (115)

To obtain the average spectral dimension, one has to calculate the normalized trace of the
return probability P̃O

tree
(λ). It can be shown that d = 1 and this can be intuitively understood

by noting that the topology of NTD is dominated by linear chains which become longer and
longer in the outer branches [21]. Therefore, while NTD are locally transient if the ramification
k is greater than 2, they are always recurrent on the average. This result has been generalized.
Indeed, recently it has been shown that all physical trees, satisfying conditions (a), (b) and (c)
are recurrent on the average [37].

The cutting decimation transform can be applied to a large class of non-exactly decimable
fractals which correspond to more general cases of the NTD . These are built with the same
recurrence procedure as the NTD and we shall call them 2mNTD, nNTD and p-polygonNTD ,
depending on the growth rules for the branches [24].

The first generalization is that of 2mNTD . The 2mNTD are infinite fractal trees that can
be recursively built using the same recipe as for NTd but, from point 1, the log splits into k
branches of length 2m (i.e. made of 2m consecutive links) which, in turn, split into k branches
of length 22m and so on in such a way that each branch of length 2nm splits into k branches of
length 2(n+1)m. The case m = 1 corresponds to the usual NTD previously studied. If m > 1
the time rescaling procedure which led to (112) and (113) must be iterated m times obtaining

P̃O
tree

(λ) =
(∏m

i=1
2

2−λ2
i

)
P̃O

tree
(λi+1) + k

(1 − λ2)
(∏m

i=1
2

2−λ2
i

)
P̃O

tree
(λi+1) + k

(116)
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Figure 12. Four-polygon NTD .

with

λi =
λ i = 1

λ2
i−1

2−λ2
i−1

i > 1,

i being the iteration step. This gives, with the same steps as for m = 1:

d̃2m = 1 +
ln k

ln 2m
, (117)

which represent the generalization of the result obtained for m = 1.
The previous results can be extended to nNTD , where now n is an integer and not

necessarily a power of 2, and to p-polygonNTD , where the branches of NTD are replaced by
p-vertices regular polygons (figure 12).

Let us consider nNTD first. While relation (111) for the cutting transform still holds,
the exact time-rescaling procedure cannot be applied to the branch of generic length n.
However even in this case it is possible to obtain an asymptotic recursion relation applying
the renormalization group techniques usually implemented on exactly decimable fractals.
Although this procedure cannot give an exact equation for P̃O

tree
(λ) as in the previous case,

nevertheless it can be used to obtain the exact value of d̃ via an asymptotic estimation.
Indeed, in this case the branch of the nNTD can be considered as a tree with a dilatation

factor equal to n. The log of this tree can be reduced to a unitary length log after the suppression
of the n−2 sites between the edges and introducing a new link connecting the edges. The same
operation can be repeated for branches of every length suppressing the inner n−2 consecutive
sites in every sequence of n sites and introducing a new link between the surviving points.
The final structure is equal to the original tree and the generating function P̃1

branch
(λ) becomes

P̃1
′branch

(λ′) where

λ′ = n2λ (118)

P̃1
′branch

(λ′) = 1

n
P̃1

branch
(λ). (119)
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Now P̃1
′branch

(λ′) coincides with P̃O
tree

(λ′) since our branch has been transformed into a tree
and (111) can be rewritten as

P̃O
tree

(λ) = nP̃O
tree

(n2λ) + k

2λnP̃O
tree

(n2λ) + k
. (120)

Using the procedure described in the previous section for 2mNTD , from (120) it follows that
for an n − NTD the spectral dimension is given by

d̃n = 1 +
ln k

ln n
. (121)

An analogous technique can be used for p-polygonNTD (figure 12). The log polygon has
now p faces of unitary length; from each of p − 1 of its vertices k polygons depart, whose
faces have length n and so on. These structures, though similar to NTD , are no longer loopless
structures nor necessarily bipartite graphs (e.g. the 3-polygon tree). The cutting–decimation
transform can be applied to p-polygonNTD as in the case of NTD with the same substitutions
(118) and (119). Indeed, even if (111) does not hold in this case, a new relation between the
generating functions of the tree and that of one of its branches can be obtained using bundled
structures theory discussed above [38]. Let us consider a p-polygonNTD and suppose we
attach k branches also in the free vertex of the log (the root of the tree): we obtain a bundled
structure having the log polygon as the base and the graph made of k branches as the fibre.
Since for a p-polygon

P̃O(λ) ∼ 1

p(1 − λ)
(122)

as λ → 1, we obtain for our bundled structure

P̃O
b.s.

(λ) = 1

1 − k
k+1 F̃1

branch
(λ)

1

p

(
1 − λ

k + 1

1

1 − k
k+1 F̃1

branch
(λ)

)−1

, (123)

where P̃O
b.s.

(λ) is the generating function of the probability of returning to point O (one of the
vertices of the log polygon) after a random walk on the bundled structure and F̃1

branch
(λ) is the

generating function of the probability of returning for the first time to the point of connection
with the base after a random walk on the fibre. Now,

F̃O
b.s.

(λ) = k

k + 1
F̃1

branch
(λ) +

1

k + 1
F̃O

tree
(λ), (124)

where FO
tree(λ) refers to the p-polygonNTD . From (123) and (124) and using the usual

relation between F̃1
branch

(λ) and P̃1
branch

(λ), a relation between P̃O
tree

(λ) and P̃1
branch

(λ)

follows, which represents the cutting transformation. It is now possible to perform the
cutting–decimation transform for p-polygonNTD and get

d̃p = 1 +
ln k(p − 1)

ln n
. (125)

In the same way we can calculate the spectral dimension of an NTD built with d-dimensional
simplexes instead of p-polygons. A d-dimensional simplex is a complete graph of d +1 points,
i.e. a graph where each point is the nearest neighbour of all other points. The two-dimensional
case is the triangle, the three-dimensional one is the tetrahedron and so on. Since for d-simplex
P̃O(λ) ∼ 1/(d + 1)(1 − λ) the spectral dimension is

d̃d = 1 +
ln kd

ln n
. (126)
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14. Relation to other physical problems

As we have shown in previous sections, the random walk problem is strictly related to the
graph topology. Indeed, the main physical quantities are simple functions of the adjacency
matrix A, which algebraically describes the graph structure. Now, the Hamiltonians of a
series of fundamental statistical models are linear in A, therefore even their behaviour is
deeply influenced by topology and it can be expressed in terms of random walk functions.
For this reason, the main concepts and parameters characterizing random walks, such as
recurrence and transience, as well as the spectral dimension, also determine the properties of
these models, which have very different physical origins. This provides a very powerful tool
to investigate and classify geometrically disordered and inhomogeneous systems, where the
usual techniques and ideas developed for lattices do not apply.

14.1. The oscillating network

Probably, the physical model whose connection with random walks has been most extensively
explored is the so-called oscillating network.

The harmonic oscillations of a generic network of masses m linked by springs of elastic
constant K can be studied by writing the equations of motion of the displacements xi of each
mass from its equilibrium position:

m
d2

dt
xi = −K

∑
j

Aij (xi − xj ) = −K
∑

j

�ijxj , (127)

which after Fourier transforming with respect to the time reads
ω2

ω2
0

x̃i =
∑

j

�ij x̃j , (128)

where ω2
0 ≡ K/m. In other words, the determination of the normal modes and of the

normal frequencies of the oscillating network reduces to the diagonalization of the Laplacian
operator δ.

Noting that � = Z(1 − P), where 1 is the identity matrix and P is given by (4), it is not
difficult to establish mathematical correspondences with random walks. In particular, using
the universality properties discussed in the previous sections, one can show a fundamental
result concerning the density ρ(ω) of normal modes at low frequencies:

ρ(ω) ∼ ωd̄−1 for ω → 0. (129)

This basic connection between random walks and harmonic oscillations was first introduced
by Alexander and Orbach in 1982 for the case of fractals. Note that at that time the splitting
between local and average spectral dimensions on inhomogeneous structures was not yet
known and the exponent describing the scaling of the density of states at low frequencies was
simply called spectral dimension, since it was related to the vibrational spectrum. Due to
the already mentioned universality properties, the above result holds for the very general case
where oscillating masses and elastic constants may have different values on different sites
and links, provided they are bounded by positive numbers. More precisely, considering the
equations of motion

mi

d2

dt
xi = −K

∑
j

Jij (xi − xj ) = −K
∑

j

Lij xj (130)

for the same graph of (127), if (49) holds together with

∃mmin,mmax > 0|mmin � mi � mmax ∀i (131)

then the asymptotic behaviour of the density of vibrational states is still given by (49).
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From all the above properties, it follows that the spectrum of the Laplacian operator L also
depends on d̄: indeed it can be shown [10] that the spectral density ρ(l) of L at low eigenvalues
behaves as ρ(l) ∼ ld̄/2−1.

The average spectral dimension is crucial in determining the behaviour of the oscillating
network in equilibrium with a thermal bath at temperature T. Considering the Hamiltonian of
the system given by (129)

H =
∑

i

p2
i

2mi

+
1

2
mω2

0

∑
ij

Jij xixj (132)

and calculating the thermodynamic averages with respect to the Gibbs weight exp(−H/kT ),
where k denotes the Boltzmann constant, one can show that, for positive T,

〈x̄2〉 = ∞ for d̄ � 2 (133)

while

〈x̄2〉 < ∞ for d̄ > 2. (134)

This is the generalization to graphs of the fundamental Peierls result about the thermodynamic
instability of oscillating crystals in low dimensions. In other words, for an infinite oscillating
network with d̄ � 2 in equilibrium with a thermal bath, the mean square displacement of
masses from their equilibrium positions would diverge.

14.2. The Gaussian model

The Gaussian model is the simplest statistical model used to study magnetic systems on
lattices. Even if it is not realistic, its properties are fundamental to understand more complex
and phenomenologically significant models. In field theory it is also known as the ‘free scalar
field’. The Gaussian model on G is defined by the Hamiltonian

H = 1

2

∑
ij

φi

(
JLij + m2

i δij

)
φj − h

∑
i

φi, (135)

where φi is a real field, J > 0 a ferromagnetic coupling, h an external magnetic field and
m2

i = αim
2, with 1/K < αi < K for some positive K [10]. Its specific free energy fG is

given by

fG

(
J,m2

i , h
) = lim

N→∞
1

N
F = − lim

N→∞
1

N
log Z, (136)

where Z is the partition function calculated according to the Boltzmann weight exp(−H). The
spectral dimension is related to the singular part of fG for h = 0 and m2 → 0 by

Sing(f ) ∼ md̄. (137)

The covariance of this Gaussian process reads

〈φiφj 〉 ≡ Cij (m
2) = (� + m2η)−1

ij (138)

and hence it satisfies by definition the Schwinger–Dyson (SD) equation

(Ji + m2ηi)Cij (m
2) −

∑
k∈G

JikCkj (m
2) = δij . (139)

Setting

Cij = (1 − W)−1
ij

Ji + m2ηi

, Wij = Jij

Jj + m2ηj

(140)
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Table 1. Critical exponents of the spherical model on a graph of spectral dimension d̄.

1 � d̄ < 2 2 < d̄ < 4 d̄ > 4

T = Tc δ → ∞ δ = d̄+2
d̄−2

δ = 3

T < Tc – γ ′ does not exist γ ′ = 1

T > Tc γ = − 2
d̄−2

γ = 2
d̄−2

γ = 1

T < Tc – c = 1
2 KB c = 1

2 KB

T > Tc α = d̄
d̄−2

α = d̄−4
d̄−2

α = 0

T < Tc – β = 1
2 β = 1

2

one obtains the standard connection with the random walk (RW) over G [9]:

(1 − W)−1
ij =

∞∑
t=0

(W t)ij =
∑

γ :i←j

W [γ ], (141)

where the last sum runs over all paths from j to i, each weighted by the product along the path
of the one-step probabilities in W :

γ = (i, kt−1, . . . , k2, k1, j) �⇒ W [γ ] = Wikt−1Wkt−1kt−2, . . . , Wk2k1Wk1j . (142)

Note that, as long as m > 0, we have
∑

i (W
t)ij < 1 for any t, namely the walker has a

non-zero death probability. This implies that Cij is a smooth function of m2 for m � ε > 0.
In the limit m → 0 the walker never dies and the sum over paths in equation (141) is dominated
by the infinitely long paths which sample the large scale structure of the entire graph (‘large
scale’ refers here to the metric induced by the chemical distance alone). This typically reflects
itself into a singularity of Cij at m = 0 whose nature does not depend on the detailed form of
Jij or ηi , as long these stay uniformly positive and bounded.

Of particular importance is the leading singular infrared behaviour, as m2 → 0, of the
average [C(m2)]G of Cii(m

2), which is a positive definite quantity, over all points i of the
graph G, which we may write in general as

Sing[C(m2)]G ∼ c(m2)d̄/2−1. (143)

14.3. Spherical model and O(n) models

The spherical model is again a magnetic model with no direct connection to phenomenology.
Nevertheless, it is a little more complex than the Gaussian one and, most important, it exhibits
phase transitions at a finite temperature for d̄ > 2. Moreover, its critical exponents can be
exactly determined and they turn out to be simple functions of d̄ , pointing out the crucial
role of the average spectral dimension in phase transitions and critical phenomena. The
spherical model can be defined on a generic graph through the Hamiltonian (135) with the
generalized spherical constraint

∑
i ziφ

2
i = N . We assume the coordination numbers to be

bound: 1 � zi � zmax. Its free energy and correlation functions can be expressed in terms of
the Gaussian ones. Then the critical behaviour is obtained from the infrared singularities of the
latter, i.e. in terms of the long time behaviour of random walks [12]. The results concerning
the critical exponents are summarized in table 1, where Tc = 0 for d̄ � 2.

The so-called O(n) models are defined, for positive integer n, by the Boltzmann weight
exp(−βHn), where

Hn[S] = 1

2

∑
〈ij〉

Jij (Si − Sj )
2, (144)
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the sum extends to all links of a certain graph G, Jij > 0 are ferromagnetic interactions, which
may vary from link to link, and Si is an n-dimensional vector of fixed length normalized by
Si · Si = n. They represent more realistic magnetic models, but their exact solution is in
general impossible. However, a series of complex but powerful inequalities, relating their
correlation functions to the random walk generating functions, allow us to prove some very
general results shedding light on the complicated phenomena concerning phase transitions on
graphs. In particular it has been proven that:

• they cannot have phase transitions at T > 0 if G is recurrent on the average [11];
• they exhibit phase transitions at T > 0 if G is transient on the average [15];
• for n → ∞ their critical exponents tend to the spherical ones [17].
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